超声波传感器是利用超声波的特性研制而成的传感器。在与光源对角的另一侧设有光线探ce器(如光电晶体管),它能够探测到被颗粒物反射的光线,并根据反射光强度输出PWM信号(脉宽调制信号),从而判断颗粒物的浓度。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接shou器。有的超声波传感器既作发送,也能作接收。超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接shou器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接手器的输出,从而对发送的超声波进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
我们都知道超声波传感器分为发射、接收、收发一体3种,但发射和接收的原理分别是怎样的呢?当从超声波发射传感器输入频率为40KHz的脉冲电信号时,压电晶体会因变形而产生振动,振动频率在20KHz以上,由此形成了超声波。超声波传感器在测量液位的应用超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。那么该超声波经锥形共振盘共振放大后定向发射出去;接收传感器接收到发射的超声波信号后,促使压电晶片变形而产生电信号,通过放大器放大电信号。
发射头是利用压电效应来实现产生超声波的,就是在发射头不断给出一定频率的如40KHz的电压信号,就可以产生超声波。可以考虑利用单片机来实现,当然功率不大的可以用单片机来实现。
超声波传感器的频率主要有2种,分别是25KHz和40KHz;超声波是一种频率大于20KHz的音波。发射式的传感器本身发射超声波,再接受反馈的超声波;接收式的传感器本身不发射超声波,是通过传感器接收超声波,将其转换成电信号,进行测量。
为获取数据,在2013年,就有国家提出“万亿传感器革命”的口号,旨在推动社会基础设施和公共服务中每年使用1万亿个传感器,预计在2030年后将100万亿传感器嵌入到各种场所,可以预见,在不久的将来,我们身边将到处布满传感器,再把大量传感器采集的数据与开放数据等组合,依托人工智能等技术进行大数据分析,就会产生价值更高的数据。从传感器相关企业发展情况来看,小而散是当前传感器产业的显著特征。
多年以来,传感器市场规模也是呈现快速增长态势,随着物联网的兴起,传感器产业迎来了巨大的发展契机,以及随着从事传感器技术研发的机构和投入不断增多,传感器技术也取得了突飞猛进的发展。
以上信息由专业从事检知器传感器维修的台湾研新于2025/5/7 21:29:20发布
转载请注明来源:http://wuxi.mf1288.com/twyx2016-2860703096.html